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Abstract
The Kondo effect in a Luttinger liquid is studied using the renormalization group
method. By renormalizing the boson fields, scaling equations to the second
order for an arbitrary Luttinger interaction are obtained. For the ferromagnetic
Kondo coupling, a spin bound state (triplet) can be realized without invoking
a nearest neighbour spin interaction in agreement with the recent Bethe ansatz
calculation. The scaling theory in the presence of the scalar potential shows
that there is no interplay between the magnetic and non-magnetic interaction.
Also a study on the crossover behaviour of the Kondo temperature between the
exponential and the power-law type is presented.

1. Introduction

The Kondo problem in a one-dimensional quantum system has attracted substantial interest
in connection with the recent rapid development of the nanofabrication technology. In one
dimension, the interacting electron system is described by the Tomonaga–Luttinger liquid
theory [1–5], whose low-energy excitations are not quasiparticles but collective charge and
spin density fluctuations. The magnetic impurity effect in this non-Fermi liquid was first
studied by Lee and Toner using a scaling analysis on the kink gas action [6]. They obtained the
scaling equation to the first order of coupling constant in the weak coupling regime. Furusaki
and Nagaosa (FN) extended the study and obtained a set of scaling equations up to the second
order using the poor man’s scaling theory [7]. In their study, FN proposed an interesting
conjecture that even a ferromagnetic Kondo impurity as well as an antiferromagnetic one
would be completely screened. In the antiferromagnetic coupling case, the coupling constant
flows to a strong coupling regime and, thus, the magnetic impurity and a conduction electron
form a singlet. But, in the ferromagnetic case, it is not clear whether it flows into a strong
coupling regime or not. In order to clarify the situation, FN considered coupling of impurity
spins not only with the same site electrons but also with the nearest neighbour conduction
electrons. In this picture, the impurity and three conduction electrons form a singlet composite.
However, a recent Bethe ansatz (BA) result by Wang and Voit showed that spins form a triplet
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for the ferromagnetic coupling case [8]. These conflicting results call for a more detailed
renormalization group (RG) analysis to clarify the physical situation.

In this paper, we carry out an RG analysis which goes beyond the poor man’s scaling
scheme in the presence of the Kondo interaction. We bosonize the Kondo interaction term
using the Abelian bosonization. Carrying out a full RG calculation for the second-order
cumulant, we obtain a set of general scaling equations valid for an arbitrary strength of the
Luttinger interaction. We show that the present RG calculation confirms the calculation drawn
from the BA calculation using an open boundary condition.

Another recent BA study of the same problem by Wang and Eckern showed that there is
a competition between the Kondo coupling and the impurity potential [9]. When the impurity
potential is dominant, the system is shown to flow to a weak coupling fixed point. However,
when the magnetic interaction is dominant, a spin complex is shown to be formed. In order
to investigate this problem, we bosonize the potential scattering term and perform a scaling
calculation. The result shows that the magnetic interaction and the potential scattering do not
interplay in the scaling procedure and flow independently.

In the first-order scaling, the Kondo temperature in the Luttinger can be calculated
analytically to show a power-law behaviour in contrast to the exponential one of the
conventional Kondo model [6]. However, it is not possible to show the crossover from the
Fermi to the Luttinger liquid in the first order. In this paper, we study the crossover behaviour
of the Kondo temperature from the exponential to the power-law type as a function of the
Luttinger interaction, by solving the RG equations.

2. Bosonization of the Kondo Hamiltonian and the partition function

Introducing the two phase fields,

φν = − iπ

L

∑
p �=0

e−α|p|/2−ipx

p
(ν+(p) + ν−(p)) − (N+ν + N−ν)

πx

L

θν = iπ

L

∑
p �=0

e−α|p|/2−ipx

p
(ν+(p) − ν−(p)) + (N+ν − N−ν)

πx

L
(1)

the one-dimensional model Hamiltonian with the forward electron–electron scattering is
written by

H = 1

2π

∑
ν

∫
dx

(
vνηνπ

2π2
ν (x) +

vν

ην

(
∂φν(x)

∂x

)2)
(2)

where ν = ρ or σ , + (−) means the right (left) going mode and the parameters vν and ην are
given by

vν =
√(

vF +
g4ν

π

)2
−

(g2ν

π

)2
ην =

√
vF + ((g4ν − g2ν)/π)

vF + ((g4ν + g2ν)/π)
. (3)

Here, g2 and g4 are the dimensionless coupling parameters [3]. The fields φν and πν satisfy
the canonical boson commutation relation

[φν(x), πν ′(x ′)] = iδνν ′δ(x − x ′)

[φν(x), θν ′(x ′)] = i
π

2
δνν ′ sign(x ′ − x) θν(x) = π

∫ x

−∞
πν(y) dy. (4)
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Alternatively, this Hamiltonian can also be obtained directly from the fermion
representation of the one dimensional interacting electron system using

ψrs(x) = lim
α→0

eir(kF − π
L
)x

√
2πα

ηrs exp

[
− i√

2
(rφρ(x) − θρ(x) + s(rφσ (x) − θσ (x)))

]
(5)

where ηrs is the Majorana fermion operator which satisfies the following relations [5]:

[ηrs, ηr ′s ′ ] = 2δrr ′δss ′

η+↓η+↑ = η−↓η−↑ η+↓η−↑ = −η−↓η+↑ η+↑η−↑ = −η+↓η−↓ · · · . (6)

If a single magnetic impurity is introduced in one-dimensional interacting electron system,
the Kondo interaction term is given by

HK = J �S�s(0)
= JzSzsz(0) + 1

2J⊥(S+s−(0) + S−s+(0)) (7)

where �s = 1
2

∑
rr ′σσ ′ ψ†

rσ �σσσ ′ψr ′σ ′ and s± = sx ± isy . Using the relations of the Majorana
fermions, equation (6), and the bosonization formula of the fermion operators, we obtain the
bosonized Kondo Hamiltonian [10],

HK = J �S�s = Sz

2πα
(JzFα∂x

√
2φσ (0) + 2iJzBη+↑η−↑ sin(

√
2φρ(0)) cos(

√
2φσ (0)))

+
S+

2πα
e
√

2iθσ (0)(J⊥F η+↓η+↑ cos(
√

2φσ (0)) + iJ⊥Bη+↓η−↑ sin(
√

2φρ(0)))

+
S−

2πα
e−√

2iθσ (0)(J⊥F η+↑η+↓ cos(
√

2φσ (0)) − iJ⊥Bη−↑η+↓ sin(
√

2φρ(0))). (8)

The partition function of the system at temperature T = 1/β is

Z =
∫

DφρDφσDθρDθσ e−S

S =
∫

dx
∫

dτ (L0 + LK)

L0 =
∑

ν=ρ,σ

(
i∂τφν(x, τ )πν(x, τ ) +

1

2π

(
vνηνπ

2π2
ν (x, τ ) +

vν

ην

(
∂φν(x, τ )

∂x

)2 ))

LK = HK(φν(0, τ ), θν(0, τ )) (9)

where the integration is over the bosonic fields φν(x, τ ) and θν(x, τ ) with imaginary time τ

running from 0 to β.

3. Renormalization analysis

First, we divide the phase fields φν into slow and fast mode:

φν(τ ) = φνs(τ ) + φνf (τ )

φνs(τ ) = 1

β

∑
|ωn|<µ

φ̃ν(ω) e−iωτ

φνf (τ ) = 1

β

∑
µ<|ωn|<λ

φ̃ν(ω) e−iωτ . (10)

The average over the fast mode of the partition function is carried out, using the cumulant
expansion,

Z = Z0〈e−SK 〉0

= Z0

∫
DφνsDθνs exp[−S0(φνs, θνs)] exp

[
− 〈SK〉f0 +

1

2
(〈SK

2〉f0 − 〈SK〉f0
2
) + · · ·

]
(11)
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where Z0 = ∫
DφνDθν e−S0 , f indicates an average over the fast mode which will be omitted

hereafter and 〈· · ·〉0 represents an average over Z0.
First, we consider the first-order forward longitudinal scattering term〈 ∫

dτ JzFα∂x
√

2φσ (τ)

〉
=

∫
dτ JzFα(∂x

√
2φσs(τ ) + 〈∂x

√
2φσf (τ )〉). (12)

The second term in the right side vanishes because it is an average of an odd function. We,
thus, conclude that δJzF = 0 in the first order. The backward longitudinal scattering part is
scaled as follows:∫

dτ JzBη+↑η−↑〈sin(
√

2φρ(τ)〉〈cos(
√

2φσ (τ))〉

=
(µ

λ

)(ηρ/2)+(ησ /2)
∫

dτ JzBη+↑η−↑ sin(
√

2φρs(τ ) cos(
√

2φσs(τ )). (13)

In the above, we utilized the fact that the charge and spin degrees are separated. The rescaling
procedure,

JzB(µ) =
(µ

λ

)((ηρ+ησ )/2)−1
JzB(λ) (14)

gives
δJzB

JzB

=
(ηρ + ησ

2
− 1

) δλ

λ
(15)

where µ = λ + δλ and δl = −δλ/λ = −δ ln λ. Thus, we have in the first order
dJzF

dl
= 0

dJzB

dl
=

(
1 − ηρ + ησ

2

)
JzB. (16)

The scaling equations for the other scattering terms can be similarly obtained:

dJ⊥F

dl
=

[
1 −

(
1

2ησ

+
ησ

2

)]
J⊥F

dJ⊥B

dl
=

[
1 −

(
1

2ησ

+
ηρ

2

)]
J⊥B. (17)

These equations are in agreement with those of Lee and Toner [6].
The second-order cumulant is given by − 1

2 (〈S2
K〉 − 〈SK〉2), where the 〈SK〉2 term is to

eliminate unconnected diagrams. We consider one of the JzBJ⊥F terms which is given by∫
dτ

∫
dτ ′ SzS+

(2πα)2
JzB2iη+↑η−↑J⊥F η+↓η+↑

×(〈sin(
√

2φρ(τ)) cos(
√

2φσ (τ)) e
√

2iθσ (τ ′) cos(
√

2φσ (τ
′))〉

−〈sin(
√

2φρ(τ)) cos(
√

2φσ (τ))〉〈e
√

2iθσ (τ ′) cos(
√

2φσ (τ
′))〉). (18)

In order to evaluate this expression, we need the two point correlation function [11–14]

G(x, τ) = 〈φ(x, τ )φ(0, 0)〉
=

∫
dq

2π

∫
dω

2π
e−iqx eiωτπ/[((1/vη)ω2) + ((v/η)q2)]

G(τ) ≡ G(0, τ )

=




η

2
K0(µτ) for λτ � 1

η

2
ln

λ

µ
for λτ � 1

(19)
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where K0 is the modified Bessel function of the second kind. G(τ) decays exponentially with
the renormalized lattice spacing 1/µ, and decreases logarithmically for small λτ . Thus, we
regard G(τ) as short ranged and, thus, expand the cosine terms around zero. It is known
that the higher harmonic cos(2

√
2φ(0)) is irrelevant and the ((∂φ(τ)/∂τ)|τ=0)

2 term, which
is the most relevant term in the expansion can, also be shown to be irrelevant by the power
counting [11]. Short time cut-off, τ0 ∼ α/vF , merely introduces an overall constant, which
does not affect the flow of the parameter. Therefore equation (18) is reduced to∫

dτ
α

vF

1

(2πα)2

1

2
S+JzBJ⊥F (−iη+↓η−↑)

(µ

λ

)(ηρ/2)+(1/2ησ )+ησ

((µ

λ

)−ησ − 1

)

×e
√

2iθσ (τ ) sin(
√

2φρ(τ)). (20)

Collecting other terms of the second-order cumulant and rescaling as before, we have for the
transverse backward part,∫

dτ
S+

2πα
iη+↓η−↑ησJzBJ⊥F

dλ

λ
e
√

2iθσs (τ ) sin(
√

2φρs(τ )) (21)

which renormalizes the coupling constant J⊥B of the Kondo term. Similarly, we have for the
transverse forward scattering part, which renormalizes the coupling constant J⊥F ,∫

dτ
S+

2πα
η+↓η+↑ηρJzBJ⊥B

dλ

λ
e
√

2iθσ (τ ) cos(
√

2φσ (τ)). (22)

The same scaling process on the S− terms gives the same renormalization for both J⊥B and
J⊥F .

However, the scaling process involving the descendant field terms, JzFα∂x
√

2φσ (τ), is
somewhat different. One example of such a term is the second-order cumulant for the transverse
forward scattering, which is given by
SzS+

(2πα)2
JzF J⊥F η+↓η+↑(〈α∂x

√
2φσ (τ) ei

√
2θσ (τ ′) cos(

√
2φσ (τ

′)〉

−〈α∂x
√

2φσ (τ)〉〈ei
√

2θσ (τ ′) cos(
√

2φσ (τ
′))〉)

= SzS+

(2πα)2
JzF J⊥F η+↓η+↑〈α∂x

√
2φσf (τ ) ei

√
2θσ (τ ′) cos(

√
2φσ (τ

′))〉. (23)

Here, we note that

〈α∂x
√

2φσf (τ ) ei
√

2θσ (τ ′) ei
√

2φσ (τ
′)〉= lim

ε→0

1

iε

∂

∂x
〈α eiε

√
2φσf (x,τ ) ei

√
2θσ (0,τ ′) ei

√
2φσ (0,τ ′)〉|x=0. (24)

Using eA+B = eA eB e−[A,B]/2, the above expression takes the form
α

i
(2∂xGφσf

(x, τ ) − 2∂x〈φσf (x, τ )θσf (0, 0)〉)|x=0 e−Gθσf
(0,0)−Gθφf

(0,0)
. (25)

In order to calculate ∂x〈φσf (x, τ )θσf (0, 0)〉, we use the relations between density field, φσ ,
and current field, θσ [3, 14],

− i

ησ

∂φσ

∂(vσ τ )
= ∂θσ

∂x

−iησ

∂θσ

∂(vσ τ )
= ∂φσ

∂x
. (26)

Then, we have

α∂x〈φσf (x, τ )θσf (0, 0)〉 = αησ

∂

∂(vσ τ )
〈θσf (x, τ )θσf (0, 0)〉

= 1

2

dλ

λ
(27)
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using equation (19) with 1/η → η and the short-ranged nature of the correlation function
G(τ). Substituting this result into equation (23), we obtain

1

2πα
S+η+↓η+↑

(
1

2πvF
JzF J⊥F

dλ

λ

)
ei

√
2θσ (τ ) cos(

√
2φσ (τ))

+
1

2πα
S+η+↓η−↑

(
1

2πvF
JzF J⊥B

dλ

λ

)
ei

√
2θσ (τ ) sin(

√
2φρ(τ)) (28)

for the renormalization of J⊥F and J⊥B .
The longitudinal scattering parameter is scaled by consecutive transverse scattering

processes. The forward scattering part which contains J 2
⊥F is

S+S−
(2πα)2

J 2
⊥F η+↓η+↑η+↑η+↓[〈e

√
2iθσ (τ ) cos(

√
2φσ (τ)) e−√

2iθσ (τ ′) cos(
√

2φσ (τ
′))〉

−〈e
√

2iθσ (τ ) cos(
√

2φσ (τ))〉〈e−√
2iθσ (τ ′) cos(

√
2φσ (τ

′))〉]. (29)

The typical relevant term is given by

e
√

2iθσ (τ ) e−√
2iθσ (τ ′) e−√

2iφσ (τ) e
√

2iφσ (τ
′). (30)

Other terms containing higher harmonics, e2
√

2iθσ (τ ) or e2
√

2iφσ (τ) are irrelevant [11, 15].
Separating the fields into the fast and slow mode, we average on the fast mode to obtain a
short range correlation and expand the slow mode to obtain

1 + i
√

2∂τ θσs(τ )|τ=0τ + i
√

2∂τφσs(τ )|τ=0τ + · · · . (31)

We note that ∂τ θσs(τ ) gives the longitudinal scattering contribution, ∂xφσs , through
equation (26), while ∂τφσs term is cancelled by other terms. Including the contributions
from the S−S+ term, we obtain∫

dτ

[
1

2πα

Sz

2πvF

1

ησ

(
1

2ησ

+
ησ

2

)
J 2

⊥F

dλ

λ
α∂x

√
2φσs(τ )

+
1

2πα

Sz

2πvF

1

ησ

(
1

2ησ

+
ηρ

2

)
J 2

⊥B

dλ

λ
α∂

√
2φσs(τ )

]
(32)

for the J 2
⊥B contribution to the JzF renormalization. Consecutive transverse scattering also

renormalizes the longitudinal backward term, JzB, similarly;∫
dτ

Sz

2πα
2iη+↑η−↑

2

2πvF
ησJ⊥F J⊥B

dλ

λ
sin(

√
2φρ(τ)) cos(

√
2φσ (τ)). (33)

The last term to be considered in the second-order cumulant expansion is the S2
z J

2
zF term.

Scaling of this term, however, does not contribute to the magnetic interaction and, also, does
not produce any relevant term for non-magnetic interaction. Collecting the results together,
we now have the scaling equations to the second order:

dJzF

dl
= 1

2πvF

(
1

2ησ

(
1

ησ

+ ησ

)
J 2

⊥F +
1

2ησ

(
1

ησ

+ ηρ

)
J 2

⊥B

)
dJzB

dl
=

(
1 − ησ − ηρ

2

)
JzB +

1

2πvF
2ησJ⊥F J⊥B

dJ⊥F

dl
=

(
1 − ησ + (1/ησ )

2

)
J⊥F +

1

2πvF
(JzF J⊥F + ηρJzBJ⊥B)

dJ⊥B

dl
=

(
1 − ησ − ηρ

2

)
J⊥B +

1

2πvF
(JzF J⊥B + ησJzBJ⊥F ). (34)



Kondo effect in a Luttinger liquid 3277

These equations can be simplified assuming the SU(2) symmetry for the conduction electrons
(ησ = 1),

d(ρ0JzF )

dl
= (ρ0J⊥F )

2 +

(
1 + ηρ

2

)
(ρ0J⊥B)

2

d(ρ0JzB)

dl
=

(
1 − ηρ

2

)
(ρ0JzB) + 2(ρ0J⊥F )(ρ0J⊥B)

d(ρ0J⊥F )

dl
= (ρ0JzF )(ρ0J⊥F ) + ηρ(ρ0JzB)(ρ0J⊥B)

d(ρ0J⊥B)

dl
=

(
1 − ηρ

2

)
(ρ0J⊥B) + (ρ0JzF )(ρ0J⊥B) + (ρ0JzB)(ρ0J⊥F ) (35)

where ρ0 (=1/2πvF ) is proportional to the density of state. As we see later, for ferromagnetic
J , the triplet ground state can be formed due to the interaction parameter ηρ in the second
order term. In 1D correlated electron system, the electron–electron interaction induces a
short range magnetic ordering which, in turn, introduces a molecular field on the magnetic
impurity [16]. Therefore, the impurity and a electron form a triplet aligned to the molecular
field, thus, resulting the broken local SU(2) symmetry. These equations are naturally reduced
to the scaling equations of the conventional Kondo model when there is no Luttinger interaction
i.e. ησ = 1 and ηρ = 1.

So far, no assumption has been made on the strength of ηρ(= [(1 − g/πvF )/(1 +
g/πvF )]1/2). Here, g is the strength of scattering between the right-going and the left-going
mode and the scattering within the same mode is neglected. In the small g regime, the above
scaling equations are reduced as follows:

d(ρ0JzF )

dl
= (ρ0J⊥F )

2 + (ρ0J⊥B)
2 − g

2πvF
(ρ0J⊥B)

2

d(ρ0JzB)

dl
= g

2πvF
(ρ0JzB) + 2(ρ0J⊥F )(ρ0J⊥B)

d(ρ0J⊥F )

dl
= (ρ0JzF )(ρ0J⊥F ) + (ρ0JzB)(ρ0J⊥B) − 2g

2πvF
(ρ0JzB)(ρ0J⊥B)

d(ρ0J⊥B)

dl
= g

2πvF
(ρ0J⊥B) + (ρ0JzF )(ρ0J⊥B) + (ρ0JzB)(ρ0J⊥F ). (36)

We note that the above result is in agreement with the FN poor man’s scaling result except for
the symmetry breaking terms involving the g parameter. In fact, the extra terms in our RG
equations correspond to the next higher-order terms which were neglected in the FN approach.

4. The ground state

The scaling equations yield two strong coupling fixed points, (JF , JB) = (∞,∞) and
(∞,−∞). The first fixed point governs the antiferromagnetic regime, which gives the singlet
as the ground state. The second one corresponds to the ferromagnetic coupling. However it is
not clear whether this fixed point corresponds to a singlet or to a triplet state. We have calculated
flows of the coupling constant for several values of the Luttinger interaction parameter, η, for
the ferromagnetic fixed point. For finite η other than unity, JB/JF < −1 and JB + JF flows
to −∞, whereas JB + JF is equal to zero when η = 1 (figure 1). When the coupling constant
J grows and becomes large, the Kondo coupling term becomes dominant in equation (35).
Therefore, the Luttinger interaction becomes irrelevant [7] and we can treat the impurity spin
as a classical spin with the magnitude S = 1/2.
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Figure 1. The coupling constant JF,B for several Luttinger interaction strengths η. The magnitude
of slope and the value of |JF + JB | become larger as the interaction strength grows larger. The
slope of the dotted line is −1.

The asymptotic Hamiltonian which represents this situation can be written as

H =
∑
rkσ

εkc
†
rkσ crkσ +

1

4

∑
rk,r ′k′,σ

Jrr ′σ c
†
rkσ cr ′k′σ ′ (37)

where J11σ = J22σ = σJF and J12σ = J21σ = σJB . The Luttinger interaction effect is
included in the coupling constant through the renormalization process. The corresponding
Green functions are given as follows:

G11(ε) = G22(ε) = G0(ε) + G0(ε)

1
4σJF

1 − 1
4σ(JF + JB)G0(ε)

G0(ε)

G12(ε) = G21(ε) = G0(ε)

1
4σJB

1 − 1
4σ(JF + JB)G0(ε)

G0(ε). (38)

For η = 1(JF + JB = 0), there exists no bound state since the Green functions do not
have poles. This case has the same properties as the three-dimensional ferromagnetic Kondo
coupling case. However, if the Luttinger interaction is turned on (η < 1), JF + JB flows
to −∞. The Green functions have a pole for σ = +1 suggesting that a conduction electron
becomes bounded [17] to form a triplet state in the ground state for the ferromagnetic Kondo
exchange.
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5. The scalar potential scattering effect

In a more realistic model, a magnetic impurity generates scattering due to an elastic potential,
ω [10]. Recently, Wang and his coworkers have carried out Bethe ansatz calculations on the
one-dimensional Kondo problem [8, 9]. They showed that for an attractive potential scattering,
the bound state always appears, whereas for a repulsive potential scattering, there exists a bound
state for |J | > 4ω, but no bound state for |J | < 4ω.

The scaling theory for the scalar potential in the first order is similar to the magnetic
interaction. The bosonized term is

1

2πα
(2ωFα∂x

√
2φρ(0) + 4iωBη+↑η−↑ cos(

√
2φρ(0)) sin(

√
2φσ (0))) (39)

and we have the scaling equations

dωF

dl
= 0

dωB

dl
= 1 − ηρ

2
ωB (40)

showing that the backscattering contribution is relevant. In the second order, the candidates
for renormalizing the forward potential scattering are contributions from the terms like ω2

F or
ω2

B . But, we find that ω2
F yields only a constant by a simple calculation,

1

(2πα)2
4ω2

Fα
2
∫

dτ
∫

dτ ′ 〈∂x
√

2φρf
(τ )∂x

√
2φρf

(τ ′)〉 (41)

which clearly has no slow mode. Similarly, the ω2
B term generates terms such as

cos(2
√

2φσ (τ)), and cos(2
√

2φρ(τ)), which are irrelevant as discussed above. Also, we
can show that J 2

zF , J 2
zB , JzF JzB , wFwB and Jz⊥,FBωFB are also irrelevant through the same

procedure as in ω2
F and ω2

B . Thus, the potential scattering is not scaled at the second-order
cumulant and there is no interplay between the magnetic and the non-magnetic interaction.
Actually, this situation is not unexpected, since we know that the nearest neighbour Coulomb
interaction in the Hubbard model does not affect the magnetic properties [18].

In the case of an impurity spin, S = 1/2, the energy of a single electron coupled with the
impurity is such that the ferromagnetic coupling energy is 1

4J and the scalar potential is ω. It
means that if 4ω > |J | initially, the potential energy grows infinitely along the scaling process
so that no bound state can be formed. If 4ω < |J | initially, a spin triplet state is formed.
Under the open boundary condition, this corresponds to a bound state of a spin 3

2 complex in
agreement with the Bethe ansatz results [8]. Here, we note that, in the present treatment, it
is not necessary to invoke the nearest neighbour spin interaction as done by FN. We believe
that the short-ranged nature of the spin interaction makes the FN scenario unlikely, although
it cannot be ruled out completely.

6. The Kondo temperature

In the conventional three-dimensional Kondo model, the Kondo temperature is given by
TK = D e−1/2J , which originates from the scaling equation dJ/d ln D = −2J 2, where D
is the bandwidth. In their previous study, Lee and Toner showed that the scaling relation,
dJB/d ln D = −((1 − η)/2)JB , gives a power law Kondo temperature, TK = DJ

2/(1−η)

B [6].
However, the crossover behaviour from the Fermi liquid to the Luttinger one has not been
studied. In order to address this question, we consider the scaling to second order for the
forward and the backward scattering simultaneously.

From the RG flow, we get the coupling constants as functions of D, i.e. J̃F (D̃) and J̃B(D̃),
where J̃F and J̃B are the scaled couplings and D̃ is the scaled bandwidth cut-off. The Kondo
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Figure 2. The Kondo temperature as a function of the backward scattering coupling constant,
JB , for several Luttinger interaction strengths η, where T o

K is the Kondo temperature for each η at
JB/D = 0.1. The linear to nonlinear crossover is clearly shown. Note the log–log scale of the
graph. The inset shows the Kondo temperature as a function of J−1

B . The linear curve for η = 1
clearly shows the TK = De−1/2J behaviour.

temperature is an invariant energy scale in the scaling procedure and, thus, can be expressed as
TK = D̃f (J̃ ), where f (J̃ ) becomes exponential or power-law type depending on the limiting
case. For some initial value of J , TK remains constant through the scaling procedure. In such
a case, f (J̃ ) becomes proportional to 1/D̃(J̃ ), thus yielding the Kondo temperature.

TK for the backward scattering part is given in figure 2. It can be clearly seen that TK

is exponential for a weak Luttinger interaction and becomes power-law type as the Luttinger
interaction increases. From inset, we observe that the linear slope of the linear plot (η = 1) is
−1/2 in agreement with TK = D e−1/2J .

7. Summary

In summary, we have studied the Kondo effect in a Luttinger liquid in the presence of a scalar
potential. We have obtained the scaling equations up to the second order for an arbitrary
Luttinger interaction strength by renormalizing the boson fields.
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The ferromagnetic fixed point is studied using an asymptotic Hamiltonian. It is shown
that a triplet bound state can be formed in agreement with the recent Bethe ansatz calculation
without invoking the nearest neighbour spin interaction. The Luttinger interaction induce the
triplet state to break the local SU(2) symmetry about the impurity spin contrary to the result
obtained by Furusaki and Nagaosa. The magnetic interaction and the potential scattering do
not interplay and the triplet state is sustained for a weak scalar potential, |J | > 4ω. The Kondo
temperature for arbitrary strength of the Luttinger interaction is calculated. The result shows
a clear crossover behaviour from an exponential to a power law type.
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